
NASA/TM--2002-211397

On Abstractions and Simplifications in the

Design of Human-Automation Interfaces

Michael Heymann and Asaf Degani

Ames Research Center, Moffett Field, California

June 2002

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data

or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA

counterpart of peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript length
and extent of graphic presentations.

CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that complement the STI

Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti, nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest, e.g.,

quick release reports, working papers, and

bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace
Information

7121 Standard Drive

Hanover, MD 21076-1320

NASA/TM--2002-211397

On Abstractions and Simplifications in the

Design of Human-Automation Interfaces

Michael Heymann

Department of Computer Science

Technion, Israel Institute of Technology

Asaf Degani
Ames Research Center, Moffett Field, California

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035

June 2002

Acknowledgments

This work was conducted as part of NASA's base research and technology effort, human-automation theory sub-

element (RTOP #548-40-12). The first author was supported by Grant NCC 2-798 from the NASA Ames Research

Center to the San Jose State University. Michael Shafto and George Meyer provided helpful insights into this

research topic. Ronen Erez wrote the model reduction software. The authors also thank Todd Callantine, Tracy

Golden, Nolie Johnson, Kevin Jordan, and Rowena Morrison for their help and continual support.

NASA Center for AeroSpace Information

7121 Standard Drive

Hanover, MD 2t076-1320

301-621-0390

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161
703-605-6000

Summary

This report addresses the design of human-

automation interaction from a formal perspective
that focuses on the information content of the

interface, rather than the design of the graphical
user interface. It also addresses the issue of the

information provided to the user (e.g., user-
manuals, training material, and all other

resources). In this report, we propose a formal

procedure for generating interfaces and user-
manuals. The procedure is guided by two criteria:
First, the interface must be correct, that is, with

the given interface the user will be able to

perform the specified tasks correctly. Second, the
interface should be succinct. The report discusses

the underlying concepts and the formal methods
for this approach. Two examples are used to

illustrate the procedure. The algorithm for
constructing interfaces can be automated, and a

preliminary software system for its
implementation has been developed.

Introduction

Human interaction with automation is so

widespread that almost every aspect of our lives

involves computer systems, information systems,
machines, and devices. These machines are

complex and are composed of many states,
events, parameters and protocols. Yet, the only

face the user sees is the interface: always a
(highly) reduced description of the underlying
behavior of the machine. This is no coincidence,
because otherwise the user would be subjected to

enormous unnecessary complexity. Consider, for
example, consumer electronics where making the
user-interfaces and associated user-manuals as

efficient, simple, and succinct as possible is

becoming a marketing imperative, and no longer
is just an engineering and human factors ideal. As

consumer devices get increasingly complex and
multifunctional, there is a reciprocal drive to

render them simpler and easier to use (and
thereby more marketable).

In the majority of today's automated systems, the

human is the supervisor. Users interact with
systems or tools to achieve certain operational
tasks (Parsuramann et al., 2000). These tasks, or

task specifications, may involve the execution of

specific sequences of actions (e.g., a procedure
for setting up a medical radiation machine),

monitoring a machine's mode changes (e.g., an
automatic landing of an aircraft), or preventing a

machine from reaching specified illegal states

(e.g., tripping a power grid). To achieve these

task specifications, the user is provided with
information about the behavior of the machine. In

most cases, this information is provided by means
of an interface and associated user-0aanuals and

other training material.

Naturally, for the user to be able to interact with

the machine correctly and reliably so as to

achieve the task specification, the information
provided to the user must first and foremost be

correct. For example, if the pilot of an airliner
has insufficient information to resolve a mode

transition and to decide whether, after entering a
command to the autopilot, the aircraft will enter

"climb" mode or "level-flight" mode, then one
can say that the information provided to the pilot

is inadequate. One sure way to guarantee
sufficient information for correct interaction is to

provide the user with the full detail of the
machine behavior. This way the user can, in

principle, always track the status of the machine
correctly and reliably. But this amount of detail
has an obvious downside too; the size of

interfaces and weight of user manuals will be

huge, and the burden on the user

incomprehensible and unmanageable.

In practice, the interface and related user manuals

are always a reduced, or abstracted, description of
the machine's behavior. No interface provides a
complete description of the underlying behavior

of the machine. Therefore, a major concern of
designers of automated systems is to make sure
that these abstracted interfaces and manuals are

indeed adequate and correct. Currently, this

evaluation is performed in an ad hoc fashion. It
usually involves costly simulations and extensive

testing, and in industries such as aerospace and
medical equipment, it also involves complicated
certification procedures (see for example Federal

Aviation Regulation 25.1329 and associated
Advisory Circular). Yet, despite the best efforts

by design teams and certification officials,

numerous incidents and accidents involving
incorrect interfaces have been reported in aviation
(Abbott, Slotte, and Stimson, 1996), maritime

(National Transportation Safety Board, 1997),

medical (Leveson, 1995 see Appendix A -- the
Therac-25 accidents), and automotive systems

(AndreandDegani,1997).Eveninsimpler
consumerdevices,flaws in the user interface

design are frequently encountered.

Developing a correct interface is only one
requirement. In addition, we all strive for

interfaces and user-manuals that are simple and
easy to use. One basic aspect of this requirement

is to develop interfaces and user-manuals that are
succinct. That is, the number of states and events
that the user needs to understand and track in

order to operate the system correctly should be as

small as possible. Currently, the design decisions
as to what information must be provided to the
user, both in the interface and in user-manuals,

are made intuitively. Systematic methodologies
do not exist for these decisions.

One of the outcomes of having incorrect and
extremely complex interfaces is a common

problem called "automation surprises," where
operators (e.g., pilots, technicians, users) have
difficulty understanding the current status of an

automatic system as well as the consequences of
their interaction with it (Woods, Sarter, and

Billings, 1997).

In an earlier NASA report (Degani, Heymann,
Meyer, and Shafio, 2000) and a recent paper

(Degani and Heymann, 2002), we discussed a
methodology for evaluating interfaces and user

manuals. Given a description of the machine,
specifications of the user' s task, interface, and all
relevant information the user has about the

machine, the procedure evaluates whether the
interface and user manual information are correct

for the task. That is, can the user achieve all the

specified tasks correctly and reliably, given all the

information provided.'? The proposed procedure
can be automated and applied to the verification

of large and complex human-machine systems.

In the present report we take an additional step
and discuss a formal methodology for automatic

generation of interfaces and user manuals. The
requirement, of course, is that the interfaces and
user manuals be both correct and succinct. The

design problem can be formulated as follows: The

machine and the user's operational requirements
(task specifications) are given. Now the problem
is to generate an interface and associated user
information that enables the user to interact with

the machine correctly. It is further required that

2

the interface and all user information be as simple
and as succinct as possible. Naturally, additional
considerations must be taken into account to
ensure efficient human-machine interaction.

These include graphical user interface design,
cognitive limitations, human physical abilities,

and the like. But underlying all is the basic
correctness issue on which we focu_ our attention
here.

The report is organized as follows: We begin by
discussing the four components of human-

machine interaction that are part of our theory and
methodology: the machine, the task specification,
the interface, and user model. We then use these

four elements to verify the correctness of a

proposed interface for a given machine. Next, we
turn to the main topic of this report, a formal
methodology for constructing interfaces and

related user information (e.g., user-manuals).

Here we describe a procedure for abstracting a
machine model to the most succinct description
that enables correct user-machine interaction. We

illustrate this procedure with an example of a
transmission system in a car and then show other

characteristics of abstraction using an example of

a somewhat more complex machine. Finally, we
conclude with a brief summary and discuss some

of the implications of this work for designers of
automated systems.

Formal Aspects of Human-
Automation Interaction

Many aspects of the human-machine interaction,

such as the design of interfaces in terms of their

graphical appearance (which is still highly
empirical and intuitive), are not amenable to
formal analysis and design. Yet aspects of
interaction that concern the information content

provided to the user about behavior of a system
can be formally anMyzed, and thus can be
systematically verified and designed. Here the

emphasis is on questions regarding "what"
information must be provided to the user and
"when," rather than on "how" this information is

to be presented.

In this work we focus primarily on the
information content provided to the user about the

behavior of a system. This aspect of user
interaction with machines can be described and

analyzed formally by considering the following

Figure1.Transmissionsystem.

fourelements:(1) themachine-model,(2)the
operationaltasks,(3) themachine'sinterface
withtheuser,and(4) theuser'smodelof the
machine,i.e.,theinformationprovidedto theuser
aboutthemachinebehavior(e.g.,in theuser
manual).Letusbrieflyreviewtheseelements.

Machine

As stated earlier, we consider machines that

interact with their environment and specifically
with their human users. We focus our attention

on the behavior of machine states, transitions, and
events. The machines are modeled as state

transition systems (in particular finite state

machines). A state represents a mode, or
configuration, of the machine. Transitions

represent discrete-state (mode) changes that occur
in response to events that trigger them. Some of
the transitions occur only if the user triggers

them, while other transitions occur automatically
and are triggered by the machine's internal

dynamics, or its external environment.

To illustrate a typical machine model, let us
consider the machine of Figure 1, which describes

a simplified multi-mode three-speed transmission
system proposed for a certain vehicle. We use the

convention that user-triggered transitions are

described by solid arrows, while automatic
transitions are depicted by dashed arrows. The
transitions are labeled by symbols to indicate the

(triggering) circumstances under which the
machine moves from state to state.

The transmission has eight states, or modes.

These modes are grouped into three super-modes
that represent manually switchable gears (or

speeds): low, medium and high. The states within
each speed represent internal torque-level modes.

Thus there are torque modes L1, L2, L3, in the

low speed super mode; there are torque modes

M 1, M 2, in the medium speed super mode; and

modes HI, H2, H3, in the high speed super

mode. The transmission shifts automatically

between torque modes (based on torque, throttle,
and engine and road speeds). The automatic up-
shifts (to higher torque modes) are denoted by the

event symbol 8 and the automatic down-shifts by

the symbol _'. The (user operated) manual speed

changes, achieved by pushing a lever up or down,

are denoted in Figure 1 by the event symbols fl

and /9, respectively. Pushing the lever up shifts

to a higher speed and pushing down shifts to a

lower speed. The transmission is initialized in the

low torque mode L1 of the low speed (as

indicated in Figure 1 by the free incoming arrow).

Task Specifications

The second element is the specification of the
operational tasks the user is required to perform

while using the machine. For example, a common
task specification in an automated control system
is that the user be able to determine

3

Figure 2. Proposed interface and user model.

unambiguously the current and the subsequent
mode of the machine.

In terms of a formal description, the task

specification consists of a partition of the
machine's state-set into disjoint clusters that we
shall call specification classes (or modes) that the

user is required to track unambiguously. In other
words, does the user know whether the system is

currently in, or is about to enter into, the super-
mode High, Medium, or Low? We note that the

user is not required to track every internal state
change of the machine: for example, between the
modes L1, L2 and L3 inside mode Low.

Interface

The third element is the user interface. In

practice, the interface consists of a control unit

through which the user enters commands (e.g.,

mode selections, parameter changes) into the
machine, as well as a display through which the

machine presents information to the user.
Generally, the interface provides the user a
simplified view of the machine. Not all the events
of the machine are annunciated to the user, and

the interface displays only partial information
about the actual behavior of the machine.

Formally, the interface consists of a listing and
description of the events accessible to the user.

These include, of course, all the user-triggered

events (inputs to the machine), but generally only
a subset of the events that are associated with

automatic transitions. This is because some of the

latter are not monitored at all, and others are

monitored only in groups. The interface

annunciation tells the user only that one of the

events in the group took place, without specifying
which.

It is noteworthy that events per se cannot be

displayed in the interface. What can be displayed
is some consequence of their occurrence.

Therefore, events are usually represented by
display modes that become active as a result of
the event occurrence. How these modes are

presented to the user graphically (e.g., icon shape,
color, etc.) is beyond the scope of this report.

To illustrate, let's return to the multi-mode

transmission model of Figure 1. The system in
Figure 2 gives one possible user interface for this

model. Here the monitored events are only the

ones triggered by the user. In the Figure 2 we
have also provided a description of the three
display modes, as well as how the user would
observe the machine's behavior when all

automatic transitions are internalized and

unobserved. Note that the torque modes are
completely suppressed from view.

An alternate interface for the transmission is

provided in Figure 3. Here the monitored events

consist of the user-triggered events as well as the
automatic transitions. Again, we provide a

possible description of how the user might
observe the machine behavior. Note that wherever

the automatic transitions do not trigger a state
change in the user model, they are shown by

(gray) self-loops to indicate the fact that the user-
model "is aware" of the possibility that these

events might take place without its actual
participation.

4

MEDIUM

LOW-1 LOW-2

Figure 3. Alternate interface and user model.

User model

As mentioned earlier, the interface provides the

user with a simplified view of the machine, in that
it displays only partially the machine's internal
behavior. The description of the machine's

operation that is provided to the user is generally

also an abstracted simplification of the actual
machine behavior. This description is usually

provided in terms of a user manual, training
material, formal instruction, or any other means of

teaching the user; however, it is presented here as
a formal model that we refer to as the user model

of the machine. By its very nature, the user-
model is based on the interface through which the
user interacts with the machine, and thus relates

to the modes and events that are displayed there.
Therefore, for analysis purposes the interface
events and modes are all explicitly referred to in

the user-model, and in this respect can be thought
of as "embedded" in the user-model.

Let us return to the user interface displayed in

Figure 2. This Figure depicts a possible user-
model associated with the interface that monitors

only the user-triggered events for the transmission

system. This particular user-model can be
obtained from the machine model of Figure 1 by

suppressing (internalizing) the events that are not

monitored, and grouping the states as suggested
by the specification. It can be seen that the
manual shifts from MEDIUM up to HIGH or down
to LOW, as well as the down-shift from HIGH to

MEDIUM, are always completely predictable.

However, the up-shift from the LOW gear depends

on the current torque mode. Note that the up-
shifts from L1 and L2 switch the transmission to

MEDIUM speed, while the up-shift from L3

switches the transmission to the HIGH speed.

Therefore, from the suggested interface of Figure
2, it cannot be predicted whether the up-shift will
lead the transmission from LOW to MEDIUM, or to

HIGH gear.

An alternate user-model for the transmission

model is presented in Figure 3. This user-model
describes an interface that also monitors the

occurrences of two specific automatic transitions,
in addition to all user-actuated events. This user-

model, in particular, is aimed at enabling the

operator to determine whether the transmission is
in a display-mode LOW-1 (where an up-shift is

supposed to lead to MEDIUM speed), or in the
display-mode LOW-2 (where an up-shift leads to

raG/-/).

Correctness of interaction

Among the four elements that play a role in the
human automation interaction, the machine model

and the task specification must be regarded for

our purpose as given and beyond dispute, because
they are not subject to our scrutiny. In contrast,
the interface and the user model, which are the

subject of investigation in the present report, must
be examined for correctness. Specifically, we
wish to know whether a given interface and user

model enable the user to operate the machine
correctly so as to satisfy the specification.

This verification problem was the focus of a

recent paper (Degani and Heymann, 2002) in
which a methodology was described for
verification of user-model and interface

correctness for a given machine-model and
specification. It was shown that the user model
and interface are correct if, in a composite model

obtained through a suitably defined synchronous
composition of the machine model and the user

model (see Figure 4), there exist no error states

and no blocking states. An error state represents a
divergence between the machine and user models
- the user model does not indicate the correct

specification-class the machine is in and hence

leads the user to a wrong interpretation of the
machine's behavior. A blocking state is one in

which the machine can trigger a observed

5

15

I >

l.lsoc-mo_q

rt (o)

Figure 4. Masked synchronous composition.

transition that the user-model is unaware of and

does not recognize.

Next, we review the methodology of Degani and

Heymann (2002), about the verification problem.
This will also introduce us to terminology that

will be required for the discussion of the main
issues of the present report.

As we have already stated, the interface and user-
model are intended to provide an abstracted and

reduced description of the machine. This
abstracted description does not enable the user to

determine with certainty each state the machine is

in, since it is required only that the user be able to
determine which specification-class (mode) the
machine is in and which it is about to enter. Let

EM denote the set of events, or transition labels,

that take place in the actual machine model. The
events that ultimately appear in the associated

user-model and are displayed in the interface

constitute a reduced subset of the set Y_Mof

machine events. This reduction, or abstraction, is

achieved through a projection operation FI : 2;M

---) Y-'vsRas explained next, where EusR is the

event set that is displayed in the interface and
appears in the user-model.

The event set 5".Mconsists of three disjoint
O

subsets: (1) EM "the set of observed-events that

includes all machine events that are actually
presented in the interface and appear also in the

nl

user-model; (2) Y_M- the set of masked events

(that are not displayed individually, but rather are

grouped into sets of two or more events each,

with each set having a single event-label in the

user-model; and (3) g_ - the set of unobserved-

events that are neither displayed nor appear in the
user-model.

In view of the above, the event set _'usR consists

of the union of the event sets FI(X_) (which is
0

identical to E M), the event set I'I(X;_) which

denotes the set of events obtained after masking

the events in _, and the "'empty event" _"(=

FI(Y._)) that represents the set of unobserved

events.

In actual operation, the machine is driven by

events from Y_. The user tracks the progress of

the machine via the interface (display), where he

or she observes events in Y'vsR, with the aid of

the associated user-model. Thus, the user-model

and the machine evolve concurrently. But they are
only partially synchronized, in that the user-model
tracks the actual state evolution of the machine

with some uncertainty. This is because (1) not all
machine events are observed and some machine-

events are masked, and (2) the user-model is only
an abstraction of the actual machine' s behavior.

Suppose that the machine is at state q at which a

transition labeled 6t is defined, leading to a state

q' (we denote this by q__a__>q,). Assume that

when the machine is at state q, the user-model is

at a corresponding state p. Event 6t can be either
observed, masked, or unobserved.

6

LI, LOWol 1.2, LOW-2

?

L2, LOW-1

Figure 5. Composite model of the alternative user model.

If O is an observed event and hence 1-I(o_)= O_, it

is required for adequacy of the user-model that a

corresponding transition be also defined at state p,
leading to p'. That is, there must exist a transition

p _ p'. In the concurrent operation of the

machine and the associated user-model, there will

appear a transition labeled (2 from the state pair

(q,p) to the state pair (q',p'). That is, there will be

a "composite" transition (q, p)-----_-_(q', p').

If _ is a masked event, there will be a

corresponding transition p n(a) >p, in the

user-model, where 1-I(o_) is the (masked) image

of a in Evs R . The composite transition will

appearas (q,p) n(_) >(q,,p,). Thefactthat

the event labels are taken from the user-model is

because the composite transition is viewed from

the point of view of the user,

Finally, if a is unobserved and Fl(a) = _', the

composite transition will appear as

(q,p)____.L_(q,, p) (since O_ is silent and has no

corresponding transition in the user model).
For the user-model to be correct for the task

specification, it is necessary that the user-model

be able to track the machine-model's specification
classes unambiguously. More explicitly, it is

required that when the user-model enters a state

p in response to an observed event-string (or

event sequence) t, all possible states q that the

machine-model could have entered in response to

machine event strings s for which Fl(s) = t,

would belong to the same specification class.

Before proceeding with the discussion, let us use
our methodology to verify whether the user model

of Figure 3 is correct. Recall that this user-model
is aimed at enabling the operator to determine

unambiguously which speed the transmission is in
or is about to enter. The composite model of the
machine of Figure 1 and the user model of Figure

3 is shown in Figure 5. Here we can readily see
the error state (M1,High) which is entered upon

executing the event sequence 8fl (8 followed by

fl). It is evident that the user model of Figure 3 is
incorrect.

It is of course possible to try other interfaces and
user-models and then employ the verification

procedure to determine their correctness.
However, such an approach is not likely to be

very fruitful: It may take considerable effort to
develop and verify one design after the other, with

no guarantee of success. Furthermore, even when
a correct interface is found, there is no assurance

that it is the simplest. The development of a

7

systematic approach for constructing interfaces

that are both correct and succinct is the subject of
the next section.

Machine Model Reduction

In the previous section we have seen which
conditions the user-model and interface must

satisfy in order to enable the user to perform
correctly a specified task on a given machine. We

have also reviewed a procedure for verifying that
these conditions indeed hold true. However, the

question remains open as to how a correct
interface and user model can be designed

systematically for a given task.

As mentioned earlier, one possible choice of user
model is to take the full machine model as user

model and the complete machine event set as the
set of monitored events. If the machine model is

deterministic (as we assume throughout this
report), this will ensure that there will never be

any problem in predicting the next state of the

machine. But the operator would be required to
track every state and every event in the machine -

a formidable and impractical job. In the simple
example of Figure 1, the machine has 8 states, 18
transitions and 4 distinct transition labels. But this

is a tiny number when compared to "industrial
size" situations.

In this section we shall turn to the main issue of

the present and describe a procedure for the
generation of all optimal user models and
interfaces for a given machine model and task

specification. In particular, we shall consider the
problem of constructing, for a given machine and

task specification, the set of all best possible user-
models and event abstractions that satisfy the
specification. Here, by best user models and
interfaces we mean the ones that cannot be further

reduced. Since, as we shall see, these user models

(and associated event abstractions) are generally

not unique, we cannot speak of user-model
"synthesis," but rather, of machine model
reduction. We shall show how all "smallest" user

models and associated interfaces can be derived.

Compatible state sets and covers

We assume that the machine-model is given as a

state machine and that the task specification is
given as a partition of the state-set into disjoint

classes of states that we refer to as specification

8

classes (Degani and Heymann, 2002). Thus, each

state of the machine model belongs to a unique

specification class. (In Figure 1 which depicts the
multi-mode three speed transmission, the

specification classes consist of the three speeds;
Low, Medium and High. Each state, or mode,
belongs to exactly one speed.)

Let us consider a machine-model given as a state-

machine, and let the task specification consist of a

partition of the machine-model's state set Q into

disjoint specification classes Qi Qi (as

described, for example, in Figure 1 where 1 = 3).

The user model must enable the user to operate
the system correctly with respect to the
specification classes. That is, it must enable the

user to track the specification classes but not

necessarily individual states. Thus, the user does
not need to be able to distinguish (by means of the

user model and interface) between two states p

and q of the same specification class, if for the

purpose of tracking the specification classes

unambiguously it is sufficient for the user to

know that the machine visited either p or q.

More explicitly, the user does not need to be able

to distinguish between p and q if the

specification class visited following any user-
machine interaction starting in state p, is the

same as the specification class visited following

the same user-machine interaction starting at state
q. This leads to the following definition: Two

states, p and q, are specification equivalent (or

compatible), if given that the machine is presently
in either state p or q (of the same specification

class), the specification classes to be visited under
future inputs will be the same. Stated more

formally, we have

Definition: Two states p and q are

specification compatible if and only if the
following two conditions both hold:

l. The states p and q belong to the

same specification class,

L2

L3

M1

M2] ._____o.] j Cell (H 1,M 1)

H1

II3 J

L! L2 E3 M! M2 tll II2

Figure 6. Table of all pairs.

. If p' and q' are states such that

there exists an event string

s = o"1...o"n for which

p _ p' and q---2--o q' are

both defined, then p' and q'

belong to the same specification

class.

It is clear that if the only concern is to track the

specification classes, two specification

compatible states need not be distinguished in the
user model. We may also conclude immediately

that any set of states is specification compatible if
all the pairs of states within that set are
specification compatible.

Thus, if an efficient procedure is found for
computation of all specification compatible pairs,

the set of all compatible state sets will easily
computed. Indeed, the compatible triples will be

obtained as the state triples, all of whose pairs are
compatible; compatible quadruples as the

quadruples all of whose triples are compatible,
and so on.

Next, we have the following:

Definition: A set C of compatible sets of

states is called a cover of the state set of

the machine-model, if every state of the

machine-model is contained in one or

more elements of C.

Since a set that consists of a single state is

(trivially) compatible, it follows that every state is

included in at least one compatible set, so that the
set of all compatibles is always a cover.

Definition: A compatible set of states is

called a maximal compatible set, if it is

not a proper subset of another compatible

set; that is, if it is not contained in a

bigger compatible set of states.

Since sets that consist of a single state are

compatible, it is clear that every state is contained
in at least one maximal compatible set. It follows
that the set of maximal compatibles is a cover.

Definition: A cover C of compatibles is

called a minimal cover, if no proper

subset of C is a cover.

Of particular interest to us will be the set of all
minimal covers formed from the set of maximal

compatibles. That is, we shall be interested in
minimal covers whose component elements are

maximal compatible sets. In general, the number
of such minimal covers can be greater than one.

We shall see below that minimal covers by

maximal compatibles constitute the foundation of
the model reduction and interface generation

9

procedure. However, we shall first show how the

set of compatibles is computed.

Generation of compatible pairs

As stated above, the computation of compatible

sets hinges on the construction of the set of all

compatible pairs. An efficient iterative algorithm

for construction of compatible state pairs is based
on the use of merger tables (see e.g., Paull and

Ungar 1959, and Kohavi 1978, where related
model reduction problems are discussed).

A merger table is a table of cells representing

distinct state pairs. An initial table for the eight
states of our transmission example is shown in

Figure 6. Each cell of the table corresponds to a

pair of distinct states, and each pair of distinct
states appears in the table exactly once.

Next, we have the following observations that can
be easily derived from the definition of

compatible pairs:

A state pair (p, q) of the same specification

class is compatible if and only if for every

event symbol o" such that p _ p' and

q _ q' are both defined, it is true that

L2

L3

M, F F F

M2 F F F (Xl,X2)_

" F F F F F

._ F F F F F

H_ F F F F F
Li L2 L3 MI M2 I[1

either p'= q', or the pair (p',q') is

compatible.

We shall use the above characterization of

compatible sets to obtain a complementary

characterization of all pairs that are not
compatible (or incompatible). It will then be

convenient for us to compute recursively the set
of all incompatible pairs. The set of compatible

pairs will then consist of all state pairs that are not
found to be incompatible. Based on the above

characterization of compatible pairs, the
characterization of incompatible pairs is as
follows:

A state pair (p, q) is incompatible if and

only if either p and q belong to distinct

specification classes, or there exists an event

symbol o" for which p _ p' and

q _ q' are both defined, and the state

pair (p',q') is incompatible.

EUsing the above observations regarding
compatible and incompatible pairs, the

determination as to whether a state pair is
compatible or incompatible is computed
iteratively as follows.

I(H2,H3)a

(H1,H2)

H2

10

Figure 7. Resolution table (initial).

, For each state pair (p, q) that can be

determined as incompatible in the first
step based on the above characterization

(i.e., if p and q belong to distinct

specification classes), we mark the

corresponding cell F (for false). For all

other state pairs, we write in their ceils
their associated transition pairs that

consist of all distinct state pairs (p', q')

for which there exists an event symbol

o', such that the transitions p .__Z__>p,

and q _ q' are both defined.

For illustration, the initial resolution table for the

transmission model of Figure 1 is presented in
Figure 7. Notice that each transition pair in the

table has been subscripted with the associated
event label. This subscription is not essential to
the algorithm and is for the reader's convenience

only. Notice further that the cell (H1,H3) is empty
because it is neither incompatible nor has

associated transition pairs.

Next, the table is resolved iteratively.

2. At each step of the iteration every state

pair that has not yet been determined as F

is updated as follows: If the cell of a state

pair (p,q) includes a transition pair

(p', q') whose cell has already been

determined as F (incompatible), then the

cell of (p, q) is also denoted F.

Otherwise, the cell of (p, q) is modified

as follows: Each transition pair (p', q')

in the cell of (p,q) is replaced by all the

transition pairs that appear in the cell of

(p',q') .

, If in a given iteration step no new
incompatible state pairs are found (i.e., no

new F designations are added to the
table), then all the state pairs that are not

designated as F, are given the designation
T (for true). This completes the table
resolution procedure and the

determination of all compatible pairs.

To illustrate the iteration steps of the procedure,

let us return to our transmission example. The
table of Figure 8 is obtained from that of Figure 7

as follows: First we replace the transition pairs in
the cell (L1,L2) by those in the cell (L2,L3). The

cells (LI,L3) and (L2,L3) are denoted with F

L2

L3

M, F F F

M= F F F
(H2,H3)_

., F F F F F

,_ F F F F F

._ F F F F F

(Hi,H2)

(!12,H3)_

L I L2 L3 MI M2 II1 H2

Fbzure 8. Resolution table (after first iteration).

11

12

13

M I

M2

!11

112

113

F F F

F F F

F F F

F F F

F F F

1112J-t316

F

F

F

F
ill I,I12"i_,

F

F
1.1 1.2 L3 MI M2 III

|I12.113_

112

Figure 9. Resolution table (after second iteration).

because their cells include incompatible pairs.
The remaining undecided state pairs (those that
have not yet been given the value F) are modified

according to the algorithmic procedure. For
example, in the cell (M1,M2) we list the transition

pairs from the table of Figure 7 of the cell
(H1,H2) that consists of (H2,H3).

In the next resolution step the table of Figure 9 is

obtained. Here the cell (L1,L2) is marked F upon
substituting the value F of the cell (M1,H1,)
which is incompatible. The remaining undecided

cells are modified as specified by the algorithm.
In fact, notice that no further change needs to be
made to the table.

In the next step, no further incompatible pairs are
created and the table remains identical to that of

Figure 9. At this point, all the remaining
undecided cells are marked T as shown in the

table of Figure 10, concluding the table
resolution.

Thus, as seen in Figure 10, for the example of

Figure 1, the set of compatible pairs consists of
(MI,M2), (nl,n2), (HI,H3), and (n2,n3).

Notice that the states L1, L2 and L3 do not appear
in any compatible pairs and therefore the

singleton sets (L1), (L2) and (L3) are clearly
maximal compatibles.

Generation of the set of maximal

compatibles

The procedure for generation of maximal

compatibles consists of first systematically

creating all compatible sets. We begin by
computing all compatible triples, then compatible
quadruples, then quintuples, and so on. A

compatible triple, is a triple all three of whose

pairs are compatible; a compatible quadruple is a
quadruple all of whose pairs are compatible,
which is equivalent to a quadruple whose four
triples are all compatible, and so on. Once all
compatibles are listed, the maximal ones can

easily be computed by deleting from the list all

compatibles that are contained within larger ones.

For the transmission example, the maximal
compatibles are easily found to be the sets (LI),

(L2), (L3), (M1,M2) and (HI,H2,H3). It is also not
difficult to see that, in this case, they partition the
state set into disjoint subsets and hence form the

(unique) minimal cover by maximal compatibles.

Generation of reduced models

The generation of a reduced model that can serve

as a correct user model for the given machine and

specification is based on an abstraction of the
machine-model. This reduced model is obtained

by clustering the states into sets that consist of a
minimal cover by maximal compatibles.

To this end, let us assume that a minimum cover

consists of a given set of maximal compatibles

12

12

I3

M, F F F

 .12 F F F T

,,, F F F F

F F F F

,,; F F F F

F

F

F

T

T T
I.I 1.2 1.3 MI M2 II1 112

Figure 10. Resolution table (completed).

C_..... Ct , where the set C_, i = 1..... l, consists of

states {qi, q¢, } of the machine model. The

maximal compatibles C1.... , C l form the state set

of the reduced model. Here it is noteworthy that a

minimal cover by maximal compatibles need not
be a partition of the state set into disjoint subsets.

Specifically, while each state of the machine
model must be contained within some maximal

compatible set, it may well be the case that a state
is contained in more than one maximal

compatible of the minimal cover. That is, these
sets may have overlaps.

Next, we turn to computing the transitions in the
reduced model. An event symbol o" is said to be

active at C_, if there exists an outgoing transition

in the machine model labeled by o', at some state

q E C_. That is, there exists a state q' in the

machine model, such that q _ q' is defined.

We denote by C,(o') the set of all states q_ C_

for which an outgoing transition labeled by o"
exists.

Next, we define S_ (or) to be the set of all states

q' of the machine model, such that q -----L-4 q'

for some qE Ci(cr). Thus, the set Si(tr) is the

set of all states of the machine model that can be

reached from states in C_ through the event o'.

It readily follows from the definition of

compatible sets that there exists one or more

element of C1..... C I which contain S t(tr). In the

reduced model we then create a transition labeled

by cr going from the state C_ to the state C j,

where Cj is the maximal compatible that contains

S_ (tr). If more than one such set Cj exists, we

can choose any one of these (and to avoid non-
determinism in the reduced model we choose

exactly one).

To summarize, the reduced model associated with

the minimal cover C l C l is obtained as

follows. The state set of the reduced model

consists of elements p] Pl (think of p_ as

associated with C i). There is a transition labeled

o- from p_ to pj if Cj is the (chosen)set that

contains Sj (or). The reduced model is initialized

at state p_ if the machine model is initialized at a

state in C k (where, as before, there may be more

than one possible selection if the initialization

state is contained in more that one of the C_).

The reduced model obtained for the transmission

example is shown in Figure 11. The correctness
of this reduced model as a user model for the

specification is verified in Figure 12 in which the

composite model with the machine model of the
transmission is displayed.

13

/

Figure 11. The reduced user model.

I

Figure 12. Verification of the reduced mdel (no error states and no blocking are detected).

Event Abstraction

The final step of the model reduction procedure
consists of the abstraction of the reduced model' s

event set (when possible). Specifically, we ask

which events can be internalized (i.e., need not be
monitored) and which events can be clustered into

groups so that instead of being monitored

individually, they will be monitored collectively.
That is, the user will be informed that some

events in the group occurred, but will not be
informed which events of the group actually took
place.

To this end the following abstraction rules apply:

1. An event can be internalized if it occurs

in the reduced model only in self-loops.

. A set of events can be grouped together,
if every state transition that can be

triggered by any event of the group can

also be triggered by any other event of the

group.

In the transmission example of Figure 11 no event
abstractions are possible. An illustration of event

abstractions is provided in the example of the next
section.

14

A Generic machine example

In the above discussion on verification and

machine model reduction, we used an example of
a transmission system. In this final section, we

shall apply the reduction algorithm to a somewhat

more complex machine. The machine in Figure
13 has 9 states and 25 transitions. There are three

specification classes: the gray region that includes
states 7, 8, and 9; the wave-like region that
harbors state 4 and 6; and the rest of the states of

the machine (1, 2, 3, and 5). The task

specification is similar to our previous one: the

user has to track the machine along these three
regions (or modes). Specifically, the user must be

able to identify the current mode of the machine

and anticipate the next mode of the machine as a
consequence of his or her interactions.

We perform the reduction procedure along the
steps described in the previous section. First the
table is constructed, and then the iterations are

performed. The procedure terminates with only

one minimal cover of maximal compatibles that
consists of four state sets: (1,3,5) (2,3,5) (4,6)

o_t3

%6,9'

a={I,3,S}
B={2,3,5}
C=f4,6}
D=17,8}
E={9}

Figure 14. Reduced model.

15

(7,8) and (9). Notice however, that this example
illustrates a case in which the cover is not a

partition of the state set. Indeed, the state 3 is
included in two distinct maximal compatibles.

We then arbitrarily assign names to these sets,
and call them A, B, C, D, and E, respectively.

The reduced machine is obtained upon

computation of the abstracted transitions as
explained earlier, and is shown in Figure 14. It

can be seen in this figure that the event /9 occurs

only in the self-loop in state A and that the events

y and 8 are interchangeable. Thus, p can be

internalized and the events 7' and 8 can be

grouped. The result of this event abstraction is

presented in the final reduced (user) model of

Figure 15, which contains only 5 states and 16
transitions. The verification result of this model

is presented in Figure 16. No error _tates or

blocking are detected.

Masking:

Internalize ;)map p_',fi} into {0}

: q

Figure 15. Reduced model (with masking and internalization of event).

Y

16

Figure 16. Composite model.

Conclusions

In this report we discussed several formal aspects
of the design of human-automation interaction.

Specifically, we focused attention on the
construction and verification of correctness of

user models and interfaces. Two objectives

guided us in our design and analysis: (1) that the
interfaces and user models be correct; and (2),

that they be as simple as possible. We have

described a systematic procedure for generating
such correct and succinct user-models and

interfaces.

The discussion and the examples illustrate that
even for machines that are seemingly simple, i.e.,
that have very few states and straightforward task

specifications, finding a correct interface and
user-model is not a trivial matter. Interfaces that

intuitively may appear to be correct are shown,

after applying formal verification, to be faulty. It
is therefore not surprising that we encounter so
many automation problems in commonly

encountered systems. Indeed, such problems can

be found in almost every computer-based system.

Thus, the main focus of the report is on a
systematic procedure for constructing correct and
succinct user-models and interfaces. The

proposed reduction procedure generates interfaces
that are not necessarily intuitive or easily

correlated with the underlying system (e.g., see
the reduced user model of Figure 15).

Nevertheless, these user models are formally
correct and efficient. They are also irreducible.

This is a marked departure from the usual ad hoc
way of constructing abstractions in interface
design. But this change in approach is necessary,

given the complexity of current systems, the
expected increase in complexity of future

systems, and the ever-increasing requirements for
correct and reliable operation.

As discussed in the section "compatible states sets

and covers," the proposed procedure may lead to

more than one possible minimal (irreducible)
interface and user-model. That is, it may find

several minimal covers (of maximal compatibles).
These minimal covers are all correct and efficient

reductions of the same machine and task-

specification. Naturally, the decision as to which
one is selected constitutes a human-factors and/or

engineering design decision. It affords the

designer with several candidate interfaces and

allows designers the freedom to choose the most
appropriate one, given other design considerations
such as graphical user interface considerations,

users' preferences, and ease of implementation.

While the discussion and examples have focused
on discrete-event systems and finite state machine

representations, the approach is amenable to other
type of representations. It remains, however, an

interesting topic of future research, to expand the
approach to systems that have continuous and

discrete events (hybrid systems) as well as timed
systems.

17

References

Abbott, K., Slotte, S. M., and Stimson, D. K.

(1996). The interface between flightcrews and

modern flight deck systems. Washington, DC:
Federal Aviation Administration.

Andre, A. & Degani, A. (1997) Do you know

what mode you're in? An analysis of mode

error in everyday things. In Mouloua, M. &

Koonce, J.M., (Eds.) Human-automation

interaction: Research & Practice, Mahwah,
NJ: Lawrence Erlbaum.

Degani, A. and Heymann, M., Meyer, G., and

Shaflo, M. (2000). Some Formal Aspects of

Human-Automation Interaction, NASA

Technical Memorandum 209600, NASA

Ames Research Center, Moffett Field, CA.

Degani, A. and Heymann, M. (2002). Formal
Verification Of Human-Automation

Interaction. Human Factors.

Federal Aviation Regulation 25.1329.

Certification of Flight Guidance Systems.

Washington, DC: Code of Federal

Regulations.

Kohavi, Z. (1978). Switching and Finite

Automata Theory. New York: McGraw-Hill.

Leveson, N. (1995). Safeware: System Safety

and Computers. New York: Addison-Wesley.

National Transportation Safety Board. (1997).

Grounding of the Panamanian passenger ship

Royal Majesty on Rose and Crown shoal near

Nantucket, Massachusetts on June 10, 1995.

Washington, DC: National Technical
Information Services.

Parasuraman, R., Sheridan, T.B., and

Wickens, C.D. (2000). A model for the types
and levels of human interaction with

automation. IEEE Transaction on Systems,

Man, and Cybernetics - Part A: Systems and

Humans, 30(3), 286-297.

Paull, M.C. and Unger, S.H. (1959).

Minimizing the number of states in

incompletely specified sequential switching

functions. Institute of Radio Engineers

Transactions on Electronic Computers, 356-
367.

Woods, D., Sarter, N., and Billings, C. (1997).

Automation surprises. In G. Salvendy (Ed.),

Handbook of human factors and ergonomics

(pp. 1926-1943). New York: John Wiley.

18

Form Approved

Report Documentation Page OMB No. 0704-O18R

PublicreportingburdenIo_,thiscolkctk_nofinformationis estimatedto average1 hourperresponse,ircludlr_gletzn'_lotreviewinginstructions,searchingexistingdatasources,gatherihgandmaintainingthedata
needed,andcompletingandreviewingthecollectionofreformation.Sendcommentsregardingthisburdenestirnateoranyolheraspectofths collectionof information,includingsuggestionsforreducingthisburden
IoWashingtonHeadquaMerSSe_ices,Oiredoratefor InlormationOperationsandRepeals,1215JeffersonDavisHighway,Suite1204,Arlington,VA22202-4302,ald totheOffceolManageroerdendBudget.,
PaperworkReductionProject(0704-0188),Washington.DC20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2002

4. TITLE AND SUBTITLE

On Abstractions and Simplifications in the Design of Human-
Automation Interfaces

6. AUTHOR(S)

Michael Heymann and Asaf Degani

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Ames Research Center

Moffett Field, California 94035-1000

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

548-40-12

8. PERFORMING ORGANIATION

REPORT NUMBER

IH-024

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TM--2002-211397

11. SUPPLEMENTARY NOTES

Point of Contact: Asaf Degani, M/S 262-4, Ames Research Center, Moffett Field, CA 94035
(650) 604-0013

12A. DISTRIBUTION/AVAILABILITY STATEMENT 12B. DISTRIBUTION CODE

Subject Category: 03-01, 63-02 Distribution: Public
Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

This report addresses the design of human-automation interaction from a formal perspective that

focuses on the information content of the interface, rather than the design of the graphical user

interface. It also addresses the issue of the information provided to the user (e.g., user-manuals,

training material, and all other resources). In this report, we propose a formal procedure for

generating interfaces and user-manuals. The procedure is guided by two criteria: First, the

interface must be correct, that is, with the given interface the user will be able to perform the

specified tasks correctly. Second, the interface should be succinct. The report discusses the

underlying concepts and the formal methods for this approach. Two examples are used to

illustrate the procedure. The algorithm for constructing interfaces can be automated, and a

preliminary software system for its implementation has been developed.

14. SUBJECT TERMS

Interface design, Formal methods, Human-automation interaction

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15, NUMBER OF PAGES

20

16. PRICE CODE

20.LIMITATIONOFABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

Prescribed byANSI Std Z-39-18
298-1(]2

